AOTHOR	Burrows, J. K.
TITLE	A Review of the Literature on Computational Errors
	With Whole Numbers. Mathematics Education Diagnostic and Instructional Centre (MEDIC).
INSTITUTION	British Columbia univ., vancouver. Faculty of
	Education.
REPORT NO	4EDIC-7-76
PUB DATE	[76]
NOTE	55p.; For related MEDIC reports, see ED 128 228-230;
	Not available in hard copy due to marginal legibility
	of original document
available from	Mathematics Education Diagnostic and Instructional
	Centre (HEDIC), Facuity of education, Oniversity of
	British Columbia, 2075 Mesbrook Place, Vancouver,
	B.C. V6T 185 Canada
EDRS PRICE	MP-\$0.83 Plus Postage. HC Not Available fron EDRS.
DESCRIPTORS	Algorithms; Basic Skills; *Elementary School
	Mathematics; Elementary Secondary Education; *E
	Patterns; Mathematics Education; Research; *Resea
	Reviews (Publications); Whole Numbers
IDENTIFIERS	*Computation; Number Operations

ABSTRACT

Reseaich on error patterns associated with whole number computztion is reviewed. Details of the results of some $c f$ the individual studies cited are given in the appendices. In Appendix A, 33 addition errors, 27 subtraction errors, 41 multiplication errors, and 41 division errors are identified, and the frequency of these errors made by 352 children in grades three through six is tabulated. Appendix B records the 68 errors in ultiplication ade by 2100 students in grades four through six. Appendix C lists 57 errors in long division with a one-digit divisor made by 453 children in grades five through eight. In appendix D, the twelve difficulties most often noted for each of the four operations are identified and responses of 516 children fron grades four through eight are tabulated. Appendix E gives examples of six types of errors for addition, subtraction, and nultiplication, and four types of errors for division. Appendix F records the persistence of errors made by a group of 221 fourth graders learning division when the divisor was a 2-digit number. Appendix G gives exanples of 46 comnon conputation errors which children make in computing with whole numbers. (DT)

[^0]
Mathematics Education Diagnostic and instructional Centre. DEDIS

Faculty of kducation
THE UNIVERSITY OF BRITISH COLUMBIA
2075 WISBROOK PLACH
VANCOUVER. B.C.. CANADA
VGTIW5

$\ddot{8}$

A Review of the Literature on Computational Errors with Whole Numbers
by J.K. Burrows

An individual study project directed by Dr. D. Robitaille

Mathematics Education Diagnostie and Instructional Centre
Department of Mathematics Education
Faculty of Education
University of British Columbia
Vancouver, B.C.
V6T 1W5
3

TABLE OF CONTENTS

Page
Review of Research 1
Summary and a Suggestion 9
for Future Research
Appendices
Appendix A 11
Appendix B 15
Appendix C 21
Appendix D 25
Appendix E 27
Appendix F 33
Appendix G 34
Bibliography 41

Educators have spent many years diagnosing the various computational errors made by students. In 1925 Buswell and Judd stated:

The term "diagnostic tests" has become very familiar to those working in the field of measurement, and at the present time the chief interest in that field seems to be along the lines of specific analysis and diagnosis of pupils' difficulties (p. 113).

Buswell and Judd (1925) found that at that time, there were thirtyone studies which dealt explicitly with diagnosis and remediation of arithmetical errors. Twenty of those articles were devoted specifically to an analysis of errors, mainly errors in the fundamental processes. Of these studies, a study by Uhl (1917) was the first to diagnose errors by observing the pupil and questioning him while at work. As Buswell and Judd indicate:

The advantage of this procedure as compared with the method of analyzing test papers can scarcely be overestimated. The great variety of mental processes employed by pupils in doing even very simple work makes it clear that no method can be adequate which fails to get first-hand information with regard to the actual processes used (p. 118).
Of the thirty-one studies, Buswell and Judd found that the best systematic plan of diagnosis was wr rio by Bruecknër (1923). Brueckner used Uh1's diagnostic interview te ue. He identified ten common errors in addition, seven in subtraction and division and six in multiplication. For Buswell and Judd, Brueckner's study contained the essence of a genuine scheme of diagnosis. However, they saw a need for a more extensive analysis of errors and more detailed examples of errors. They state:

If such a scheme can be accompanied by a set of diagnostic tests which are so made that they proceed step by step in difficulty and if a sufficiently detailed manual of directions can be supplied for making these diagnoses and for following them with remedial treatment then there is res ion to believe that the method of. diagnosis and remedial treatment will become a permanent part of the technique of teaching arithmetic (p. 127).

This statement set the stage for the diagnostic studies of Buswell and John (1926). Their work was much more extensive and complete than any study prior to 1926. They individually diagnosed, using Uhl's diagnostic interview technique, 352 'students from grades three to six. They identified and gave examples of, and the frequency of occurence of, thirty-three addition errors, twenty-seven subtraction errors, forty-one multiplication errors and forty-one division habits (Appendix A contains the list of habits). They also constructed computational problems that would test for these habits and diagnostic charts on which to record them.

In 1930, Brueckner's text Diagnostic and Remedial Teaching in Arithmetic was published. Brueckner did not introduce any whole number, computational errors unique from those of Buswell and John, however, he did group the errors of Buswell and .John into "types of errors". For example, he grouped the thirty-three addition habits under six types: (1) errors in combinations, (2) counting errors, (3) carrying errors, (4) faulty procedures, (5) lapses and other miscellaneous faults, and (6) used scratch paper. Similar groups of errors were constructed in the other three operations.

A study by Burdge (1932) dealing with errors in multiplication revealed some errors not included in the Buswell and John study. Burge again used the individual diagnosis technique. His careful analysis of the mental processes of 2110 children (grades four to six) in their responses to exercises in multiplication revealed sixty-eight errors and questionable habits of work (see Appendix B). In a fashion similar to Brueckner, Burge grouped the habits and errors into seven categories as follows:
(I) Errors and habits in obtaining combinations
(II) Errors and habits in carrying
(III) Irregular errors and habits
(IV) Errors and habits in the misuse of zero
(V) Errors and habits in placing partial products
(VI) Errors and habits in adding partial products
(VII) Miscellaneous errors and habits

Upon comparison of the errors listed by Burge with those of Buswell and John, I have found thirteen multiplication errors not identified in the Buswell and John study. These new errors are identified in the appendix by asterisks.

In his conclusion, Burge supports the diagnostic interview technique with the statement:
"Relatively few type errors and questionable habits of work could be analyzed with certainty from the written responses." (p. 194).

A very brief exposition by Myers (1935) gives an incomplete treatment of common difficulties in arithmetic; including telling time, zero errors, and number relationships. The article is only worth mentioning as it is the first reference to errors involving zero as a special category of arithmetical errors. The author does not give examples of zero errors, but rather gives examples of questions in which zero errors often occur.

The thirty-fourth yearbook (1935) of the N.S.S.E. was completely devoted to educational diagnosis. Chapter XIV, Diagnosis in Arithmetic, is written by L.J. Brueckner. The list of arithmetical errors in this chapter is a subset of the arithmetical errors cited by Brueckner in his book Diagnostic and Remedial Teaching in Arithmetic (1930).

A study by F.E. Grossnickle (1936) revealed many errors in !roor division with a one figure divisor. He studied errors made by 453 stucc, in grades five to eight. Before making a detailed analysis of earh ? paper, Grossnickle constructed a tentative list of errors and fert..,
procedures from the studies reported by Buswell and John (1926), Brueckner (1930), Lazar ${ }^{1}$ (1928) and Burge (1932). Grossnickle found types of errors in his study not listed in the previous studies. He compiled a list of fifty-seven errors involving division with a one-digit divisor. The errors were grouped under six classifications as follows:
(1) errors of combinations
(2) errors resulting from the use of remainders
(3) errors resulting from zero
(4) errors caused by faulty procedure
(5) errors resulting from lapses of attention
(6) errors resulting from bringing down.

The above list represents a decreasing order of occurence of errors. The errors are listed in Appendix ${ }^{\text {b }}$ C. Those errors indicated by asterisks are errors that do not appear to be listed in previously mentioned studies. It is interesting to note tı..'t Grossnickle found, as did Lazar (1928) that zero was the cause of many errors in long division as revealed in Table V of Appendix C .

Although Grossnickle cited fifty-seven errors in long division, he noted in his summary that many of these errors were infrequent. Errors of combinations in division, multiplication and subtraction, omission of final zero in quotient only, using a remainder greater than the divisor and dropping the remainder when zero was final in the quotient only constituted 59.4% of the total frequencies of errors noted in his study. Thus Grossnickle concludes:

If a teacher is able to give special consideration to the six types of errors enumerated, provision has been made for almost 60% of the total number of errors which will impede pupil progress in long division with a one-figure divisor (p. 368).

Williams (1937) reports on the results of a study by eleven elementary school principals in Chicago. The prime purpose of the study was to determine the characteristic mathematical deficiencies of children failing

1
Lazar's study was unavailable. . 8
in arithmetic. The Buswell-John Diagnostic Chart for Fundamental Processes in Arithmetic was administered to 516 children from grades four to eight. Hence no errors apart from those of Buswell and John were listed. This study concentrated on the twelve difficulties most often noted in each process (see Appendix D) and revealed that in each of the processes the leading difficulty resulted from errors in combinations. More than threefifths of the children were making such errors. Zero errors were also common. In subtraction, 29% of all the children made mistakes because of zeros in the minuend. In multiplication, four types of difficulties with zero appeared among the difficulties with the twelve highest frequencies. In division 28% of the children made errors resulting from the zero difficulty.

In summarizing, Williams states:
The experience of the Chicago principals, moreover, gives conclusive proof that diagnosis is an individual matter. Group testing shows that pupils are failing to secure correct results, but it does not disclose what specific skill or skills are causing difficulty (p.600).
F.J. Schonell's textbrok Diagnosis of Individual Difficulties in Arithmetic (1937) contains schedules of common errors in the four processes (Appendix E). Schonell does not mention the work of Buswell and John so we must assume that he determined the various error patterns independent of their study. Schonell gives examples of six types of errors in addition, subtraction and division and four in multiplication. Errors listed by Schonell that are u:ique from those listed by Buswell and John are identified by asterisks. It is interesting to note that there are only three such errors, two in subtraction and one in division.

Schonell is a proponent of the diagnostic interview technique. He states:

In many cases this information can be derived from a scrutiny of the pupils' work, but there are some instances, particularly with pupils who are very backward in arithmetic, where it is necessary to make observation of their arithmetical habits and to employ oral analysis of their written work (p. 8).

A study by Grossnickle (1939) shows the degree of persistence of errors made by a group of 221 pupils in grade IV who were learning division when the divisor was a two figure number. A record was kept of each pupil's errors on 26 different practice periods in division. Grossnickle found 113 different kinds of errors made on the 26 different practice exercises, but he considered only 24 of the most frequent errors (Appendix F). Two of these 24 errors are unique from errors mentioned in previous studies. These two errors are identified by asterisks.

Following 1939, there was very little research that provides new insight into diagnosis of computational errors involving the whole numbers. There are, however, some studies related to diagnosis of whole number computational errors to which I will make reference.
H. Holland (1942) refers to many types of difficulties encountered in long-division. She mentions such problems as difficulties with division facts, difficulties with subtraction and multiplication, difficulties which arise when the fundamental operations are put in the long-division setting, difficulties with placement of digits, difficulties in quotient estimation and zero difficulties. Hulland does not identify any new division errors. Hence, for the purposes of this paper, her article only serves to lend support to the work of Grossnickle $(1936,1939)$.

Brueckner and Bond (1955) devote chapter eight of their book to diagnosis in arithmetic. The authors refer only to errors listed in the Buswell and John study (1926). Brueckner and Bond acknowledge that many errors are common io all of the operations: namely, errors in number combinations, counting in various ways, faulty procedures and lapses. They realize, as well, that there are special kinds of errors peculiar to each process, such as carrying in addition and multiplication, regrouping in subtraction and remainder difficulties in division. In reference to errors in computation with whole numbers, Brueckner and Bond support, but do not extend the much earlier work of Buswell and John.

A second textbook by F.J. Schonell (1957), Diagnosis and Remedial Teaching in Arithmetic, contains the same schedules of common errors as his earlier textbook (1937). These errors are Iisted in Appendix E.

A study by Harvey and Kyte (1965) attempted to determine the effects of an instructional program designed to isolate specific errors involving zero in multiplication of whole numbers and to deal with them by remedial teaching. The study was based on a sample of 15 sixth grade classes (517 students). Diagnostic tests were designed and administered in September and again in February. A total of 22 types of multiplication questions involving zero was included in the pre- and post-tests. The tests were not administered individually. After the pre-test, on which the 517 students erred 915 times, teachers were furnished with detailed records of every error made by each pupil in their class. On the basis of the error data, they were to provide both individual and group instruction to meet the ascertained needs of their students. The post-test revealed a
total of 246 errors, a 73.1% decrease in errors from the pre-test.
Unfortunately this study gives no indication of specific multiplication errors involving zero, but it does show that adequate remedial work can be organized on the basis of careful observation of errors made by students on class administered tests. As the authors conclude:

The results show that the program of diagnosis and remediation was very effective. The analysis of the results for all the classes discloses that very few pupils per class failed to correct most of their errors. Stress on the specific needs of specific children led to the desired elimination of most types of zero errors (p. 50).

A publication in School Science and Mathematics by P.C. Burns (1965) stresses the need for good analytical tests that will help in finding what arithmetic difficulties pupils have and why pupils are having the difficulties. Burns advocates the use of the diagnostic interview. His article refers mainly to subtraction of whole numbers. Burns refers to only seven types of errors in subtraction. He does not mention any specific errors in the other operations.
R.B. Ashark (1972) is also an advocate of the diagnostic interview. Ashlock devotes part of his book to identification of error patterns in computation. He refers to four types of errors in each of the four operations. The errors are similar to errors listed in previous studies. Ashlock offers no new insight into methods of grouping errors in the various operations.
F.K. Reisman (1972) in her book, A Guide to Diagnostic Teaching of Arithmetic, lists forty-six errors children make in computing with whole numbers (Appendix G). Errors indicated by asterisks were not mentioned in previous studies. Reisman, like Ashlock, is an advoate of the diagnostic interview.

12

L.S. Cox (1975) provides some new insight into the diagnostic process. She advocates givirg two tests to the children as follows:

The initial written test should be given without the teacher's direct supervision. The teacher needs to see how the child performs without the teacher's presence since it is under this condition that the child must ultimately function. The child's paper then should be analyzed for systematic computational errors. Following the analysis and after a tentative diagnosis, the teacher should watch the child work similar problems, being careful to avoid allowing the teacher's presence to alter the child's performance. Many children look to the teacher for non-verbal clues indicating approval or disapproval.

Following this procedure the teacher should ask the child what he was thinking as he worked the problems, or have the child tell what he thinks as he works the problems. This last technique, however, requires that a child be very verbal and many of the children who made systematic errors also have insufficient verbal skills (p. 155).

It is Cox's view that:
After usinf, the foregoing methods of analysin and observation, the teacher makes a diagnosis regarding the nature of the error (p, 155) .

SUMMARY

ANI) A SUG(JESTION FOR FUTURE RESEARCH

To this point, I have reviewed the published ifterature pertinent to error patterns assoriated with whole number computation. "the studies have revealed a lotal of 35 unique addition errors, 33 subtraction errors, 54 mulliplication errorn, and 71 division errors. Some attempts have been made to group the errors Into varloum categorien for each operation. It suems that there la a limit to the number of consistent errors that miudent mako in wholu number computation: that is, if atudent consistentiy maken A computational error, it is probably one of the 193 computation errore Idi:ntified fin this paper. The Buswell and Join study (1926) in the mont extanalve and ldentifled mont of the arrore that have been found in my 13
review of the research. Mr:t of the authors have advocated the diagnostic interview technique in which the student orally describes his method of proceeding through an algorithm. It is probably true that such a technique provides more insight into the actual train of thought or cause of errors than does analysis of a written test. However, very few classrootir teachers are trained to prepare and/or administer diagnostic tests and, as a result, there is little real diagnosis and remediation present In elementary school mathematics programes. Also, the diagnostic interview technique is very time consuming.

Since there seems to be a limit to the number of consistent computational errors, diagnostic tests can be constructed that will provide for as many of these errors as possible. Perhaps the few teachers that art trained to diagnose whole number computational errors and prescribe remedial work, can be put into a more productive setting. Rather than diagnose each student individually, diagnosticians could prescribe remedial work after careful analysis of students' written answers on class adminfstered diagnostic tests. Harvey and Kyte's study as previously ment loned supports this point of view. This type of diagnasis may never be ne accurate as the diagnostic interview, but the temporal efficiency of this lachnique may far outwelgh the loge of accuracy. Such an approach Impllos that the diagnostician nced never anter the classroom. The - lassroom teacher ran administar the teste, the diagnohtician can dingnose the errors and suggast appropriate areas of remediation for aach atudent wr for r roupr of atudents. Tho sinsuroom teacher can then provida the Htudentis with the Huggasted remedjaj. material.

APPENDIX A

15

TABLE 1
FREQUENCY OF HABITS IN ADDITION (ALL CASES)

Habit	Grade				Total
	III	IV	V	VI	
al Frrors in comb	81	103	78	58	320
a2 Counting.	61	83	54	17	215
a3 Added carried number last	39	45	45	26	155
a4 Forgot to add carried number	37	38	34	17	126
as Retraced work after partly done.	26	34	39	22	121
a6 Added carried number irregularly	26	30	28	18	102
a7 Wrote number to be carried.....	34	25	18	12	89
a8 Carried wrong number..	28	19	26	14	87
a9 trregular procedure in column	16	29	23	18	86
all Grouped two or more numbers..	25	22	21	16	84
all Split numbers............	12	29	25	14	80
al2 Used wrong fundamental operation	23	25	20	11	79
al3 Lost place in column............	17	17	17	14	65
al4 Depended on visualization.	24	8	27	2	61
al5 Disregarded column position	34	11	9	1	55
al6 Omitted one or more digits.	13	21	13		52
al7 Errors in reading numbers..	14	10	21	7	52
al8 Dropped back one or more tens.	13	12	17	5	47
al9 Derived unknown combination from familiar one	13	7	11	11	42.
a20 Disregarded one column.....................	15	11	8	5	36
a21 Error in writing answer.....	12	7	14	5	34
a22 Skipped one or more decades.	11	7	9	5	32
a23 Carried when there was nothing to carry.	6	9	9	5	29
a 24 Used scratch paper........................	7	5	6	0	21 20
a25 Added in pailis, giving last sum as answer a26 Added same digit in two columns..........	10	6	6	1	18
a27 Wrote carried number in answer..	10	2	2	1	15
a28 Added same number twice..	4	1	3	3	11
a29 Began with left column.	1	1	1	0	3
a30 Confused columns......	1	0	0	0	1
a31. Added carried number twice	0	1	0	0 1	1
a 32 Subtracted carried number	0	0	0 1	1	1
a33 Adted imaginary column.	0	0	1	0	1
rotal number of subjects.	96	124	116	78	414

Buswell, (i.l'. and L. John, Diagnostic Studies in Arithmetic, The University of Chicaro: 136-140; 1926.

FREQUENCY OF HABITS IN SUBTRACTION (ALL CASES)

Habit	Grade				Total
	III	IV	V	VE	
sl Errors in combinations	62	75	69	40	246
s2 Did not allow for having borrowed	19	50	57	36	162
s3 Counting.	43	44	39	10	136
s4 Errors due to zero in minuend	25	39	26	15	105
s5 Said example backward	21	38	29	12	100
s6 Subtracted minuend from subtrahend	47	33	12	4	96
s7 Failed to borrow, gave zero as answer.............	21	20	14	4	59
s8 Added instead of subtracting.	18	9	19	1	47
s9 Error in reading......................................	14	5	13	10	42
s10 Used same digit in two columna.....................	18	15	3	4	40
sll Derived unknown from known combinations.........	12	9	13	3	37
s 12 Omitted a column	9	13	8	5	35
s13 Deducted from minuend when borrowing was not necessary. \qquad	2	8	10	5	25
s14 Split numbers.	7	5	10	2	24
s15 Used trial-and-error addition	6	7	7	4	24
s16 Ignored a digit	12	6	2	3	23
sl7 Deducted 2 from minuend after borrowing.........	1	5	8	6	20
s18 Error due to minuend and subtrahend digits being same...	1	5	10	3	19
s19 Used minuend or subtrahend as remainder.........	10	6	2	0	18
s20 Reversed digits in remainder.......................	4	7	2	4	17
s21 Confused process with division or multiplication..	5	6	3	2	16
s22 Skipped one or more decades.......................	3	4	7	0	14
s23 Increased minuend digit after borrowing..........	2	2	6	2	12
s24 Based subtraction on multiplication combination.	1	2	3	0	6
s25 Error in writing answer...........................	2	1	0	1	4
s26 Began at left column................................	2	0	1	0	3
s27 Deducted all borrowed numbers from left-hand digit..	1	0	1	0	2
Total number of subjects	84	109	109	70	372

frequency of habits in multiplication (all cases)

TABLE 4

FREQUENCY OF HABITS IN DIVISION (ALL CASES)

Habit	Grade				Total
	III	IV	V	VI	
dl Errors in division combinations	35	55	59	42	191
d2 Errors in subtraction	4	25	47	37	113
d3 Errors in multiplication...........................	1	20	48	36	105
d4 Used remainder larger than divisor...............	1	17	39	29	86
d5 Found quotient by trial multiplication.........	1	8	49	24	82
d6 Neglected to use remainder within example......	5	27	25	13	70
d7 Omitted zero resulting from another digit......	0	20	22	24	66
	17	17	24	6	64
	4	15	27	18	64
dl0 Counted to get quotient...........................	5	25	24	4	58
d11 Repeated part of multiplication table...........	4	15	27	9	55
d12 Used short-division form for long division.....	0	16	24	10	50
d13 Wrote remainders within example..................	8	11	17	13	49
dl4 Omitted final remainder...................................	4	16	18	11	49
d15 Omitted zero resulting from zero in dividend...	3	12	19	12	46
d16 Used long-division form for short division.....	0	4	27	13	44
d17 Counted in subtracting..............................	3	15	18	6	42
d18 Used too large a product..............................	0	7	21	12	40
d19 Said example backward.................................	9	11	8	7	35
d20 Used remainder without new dividend figure.....	0	6	14	9	29
d21 Derived unknown combination from known one.....	1	6	11	8	26
d22 Grouped too many digits in dividend.............	1	4	12	5	22
d23 Had right answer but used wrong one..............	0	7	10	4	21
d24 Error in reading.	3	2	10	2	17
d25 Used dividend or divisor as quotient............	2	4	6	4	16
d26 Reversed dividend and divisor.......................	8	3	2	2	15
d27 Found quotient by adding.	1	3	6	4	14
d28 Used digits of divisor separately.................	0	1	8	1	10
d29 Wrote all remainders at end of example.........	1	0	6	2	9
d30 Misinterpreted table.....................................	0	2	5	2	9
d 31 Used digit in dividend twice.........................	0	2	5	2	9
d'32 Used second digit of divisor to find quotient..	0	1	5	1	7
d 33 Began dividing at units' digit of dividend.....	1	1	4	1	7
d34 Split dividend...	0	0	5	1	6
d 35 Used endings to find quotient (long division)..	0	2	3	1	6
d36 Added remainder to quotient.......................	0	2	1	0	3
d37 Added zeros to dividend when quotlent was not a whole number.	0	0	1	2	3
d38 Added remainder to next digit of dividend.......	0	0	0	1	1
d39 Wrote rows of zeros................................	0	0	1	0	1
d40 Tllegible figures....................................	0	0	0	1	1
d41 Uropped zero from divisor and not fromdividend.	0	0	0	1	1
Total number of subjects.......................	44	77	103	76	300

APPENDIX B

TABLE 1

ERRORS AND HABITS IN OBTAINING COMBINATIONS IN MULTIPLICATION RECORDED FOR 2,577 PUPILS IN GRADES IV-VI

Error or Habit	Percentage of Pupils in Each Grade					
	Lowfourth (327)*	Highfourth (480)	Low- fifth (453)	High- fifth (473)	Lowsixth (479)	Highsixth (365)
1. Error in combinations	29.1	' 17.5	33.6	25.2	30.5	! 21.4
2. Higher combinations unknown.	13.2	4.6	17.4	12.3	10.6	8.2
3. Repeats tables from known combination,	6.7	5.2	6.4	6.8	6.1	4.7
4. Lower combinations unknown.	4.3	0.6	6.0	1.5	1.7	0.5
5. Repeats tables from first	3.7	1.9	3.1	0.8	2.9	0.8
6. Wrong combination fixed.	3.4	1.9	3.1	2.5	5.6	3.0
7. Counts from known combination	2.5	2.3	2.9	1.7	5.0	2.2
8. Uses lower combination and addition	2.5	1.9	8.4	11.8	12.3	. 11.5
9. Sets down columns and adds	1.5	0.6	3.5	2.5	3.1	2.7
10. Depends on tables.	0.6	0.4	0.7	0.2	0.4	0.0
11. Makes marks and adds	0.3	0.2	0.9	0.6	0.2	0.5
12. Counts on fingers from known combination.	0.3	1.5	1.1	2.1	2.9	3.0
13. Uses special device for nine's	0.0	0.2	0.0	0.0	0.0	0.0
14. Makes dots in adding columns.	0.0	0.0	0.4	0.4	0.0	0.5
15. Subtracts from known combinitio	0.0	0.0	0.2	0.6	1.7	1.1
16. Multiplication by addition.	0.0	0.0	0.2	0.2	0.0	0.0

*The numbers in parentheses represent the total number of pupils tested in the grade.

Burge, L..V., "Types of Errors and Questionable Habits of Work in Multiplication," The Elementary School Journal, 32:188-93; Nov. 1932.

TABLE 2

ERRORS AND HABITS IN CARRYING IN MULTIPLICATION RECORDED FOR 2,577 PUPILS IN GRADES IV-VI

Error or Habit	Percentage of Pupils in Each Grade					
	Lowfourth (327)*	Highfourth (480)	Low- fifth (453)	Highfifth (473)	Low- sixth (479)	Highsixth (365)
*17. Sets down carried number..........	17.1	15.8	' 24.7	30.0	30.3	35.1
18. Counts in getting carried number..	15.6	8.5	9.1	9.5	9.4	8.5
19. Error in carrying.............	8.9	6.9	111.5	9.3	12.9	6.0
20. Fails to carry....	8.0	4.0	4.0	2.7	3.	3.0
21. Carries wrong number....	7.3	5.8	5.7	4.0	6.1	4.4
22. Forms mental image of combinations.	2.8	0.8	1.8	4.0	5.8	4.7
23. Counts on fingers to get number carried.	2.1	3.1	2.4	2.1	2.7	2.2
24. Puts number to be carried in partial product.	0.6	1.0	1.3	0.2	0.8	0.5
25. Reverses number to be set down and carried.................................	0.6	1.0	1.8	0.8	0.6	0.3
26. Sets down combination and carried number and adds......................	0.3	0.4	0.7	0.6	: 0.8	1.4 1.1
*27. Carries smaller number............	0.3	0.0	0.0	0.2	0.2	1.1
28. Secures right combination but sets down wrong number..................	0.0	1.2	1.1	0.4	0.4	0.8 3.0
29. Builds units' digit to tens'......	0.0	0.2	2.0	1.9	2.1	3.0
30. Makes dots in adding carried number.	0.0	0.0	0.0	0.2	0.6	0.5

*The numbers in parentheses represent the total number of pupils tested in the grade.

TABLE 3

IRREGULAR ERRORS AND HABITS IN-MULTIPLICATION RECORDED
FOR 2,577 PUPILS IN GRADES IV-VI

Error or Habit	Percentage of Pupils in Each Grade					
	Lowfourth (327)*	Highfourth (480)	Lowfifth (453)	Highfifth (473)	Low- sixth - (479)	Highsixth (365)
*31. Multiplies digits in multiplicand by corresponding digits in multiplier..........................	13.1	2.1	3.3	3.2	1.7	1.1
32. Uses multiplicand as multiplier...	4.3	3.3	6.6	5.9	5.4	5.2
33. Does not multiply all digits.....	4.0	2.9	4.6	4.2	5.4	3.3
*34. Can multiply by only one digit...	2.8	1.0	-1.5	0.0	0.0	0.0
35. Multiplies the carried number....	1.8	0.8	0.7	0.2	1.5	0.0
36. Does not multiply by all digits..	0.6	2.3	4.9	1.9	1.3	5.2
37. Multiplies by same digit twice...	0.6	1.0	0.9	1.1	1.0	0.3
*38. Can multiply by only two digits..	0.6	1.2	0.7	2.5	2.1	0.5
* 39. Multitiplies by carried number....	0.0	0.2	0.0	0.4	0.2	0.0
40. In a three-digit multiplier, multiplies by two digits and adds, then by third digit and adds. .	0.0	0.2	0.7	0.2	0.0	0.0
41. Multiplies backwards.	0.0	0.0	0.2	0.0	0.8	0.0

*The numbers in parentheses represent the total number of pupils tested in the grade.

TABLE 4
ERRORS AND HABITS IN THE MISUSE OF ZERO IN MULTIPLICATION RECORDED FOR 2,577 PUPILS IN GRADES IV-VI

Error or Habit	Percentage of Pupils in Each Grade				
		$\begin{array}{\|l\|l} \text { High- } & \text { Low } \\ \text { fourth } & \text { fifth } \\ (480) & (453) \end{array}$	High- fifth (473)	Low- sixth (479)	High sixth (365)
42. Sets down rows of zeros	25.4	$31.0 \cdot 32.0$	36.4	38.8	37.5
43. Gives zero value of one in multiplier............................	15.6	12.7:21.4		17.1	10.4
44. Error in placing partial product when units' digit in multiplier is zero...........................	4.6	11.7 15.9	15.4	17.7	24.1
4). Gives zero vulue of one in multiplicand..............................	2.1	$1.7: 3.8$	4.9	3.1	2.2
46. Error in carrying into zero.......	1.2	0.0. 1.3	1.5	0.8	0.3
47. Placing partial product when units digit is zero in product above...	0.6	$\begin{array}{l:l}0.6 & 0.4\end{array}$	0.0	0.2	0.0
48. Omits units' zero in multiplier...	0.3	$\begin{array}{l\|l} 1.7 & 4.0 \\ \hline \end{array}$	4.7	3.5	7.1

*The numbers in parentheses represent the total number of pupils tested in the grade.

Table 5

ERRORS AND HABITS IN PLACING PARTIAL PRODUCTS RECORDED FOR 2,577 PUPILS IN GRADES IV-VI

Error or Habit	Percentage of Pupils in Each Grade					
	Lowfourth (327)*	iHighfourth (480)	Low- fifth (453)	Highfifth (473)	Lowsixth (479)	Highsixth (365)
49. Error in placing partial product..	4.6	7.1	7.9	5.1	3.5	4.1
50. Keeps columns straight.............	0.3	1.7	0.7	1.1	0.2	0.0
*51. Omits left digit in partial product.	0.0	0.4	0.4	0.4	0.0	0.5
*52. Double indentation of partial products.	0.0	0.0	0.4	0.2	0.0	0.0
*53. Indents partial product to right..	0.0	0.0	0.2	0.0	0.2	0.0
*54. Writes two partial products with one-digit multiplier...............	0.0	0.0	0.2	0.2	1.3	0.0

ERRORS AND HABITS IN ADDING PARTIAL PRODUC'CS RECORDED FOR 2,577 PUPILS IN GRADES IV-VI

Error or Habit	Percentage of Pupils in Each Grade					
	Low- fourth (327)*	Highfourth (480)	Lowfifth (453)	High- fifth (473)	Lowsixth (479)	Highsixth (365)
55. Error in addition combinations	3.4	3.7	6.6	6.3	3.1	1.9
56. Counts to get combinations....	0.9	1.7	1.8	1.9	1.9	0.8
57. Fails to add partial products.....	0.6	0.2	0.0	0.2	0.6	0.3
58. Error in carrying.................	0.6	1.0	1.5	1.3	1.3	1.1
59. Omits digit in adding.............	0.6	0.4	0.2	0.6	0.2	0.0
60. (iroups numbers to add.............	0.6	0.8	1.8	2.5	2.3	0.8
*61. 'i is town carried number..........	0.3	3.3	7.5	6.1	7.1	12.9
62. Ciunts on fingers to get rombinations.........................	0.0	0.4	1.1	1.7	1.7	0.5
63. Makes dots in adding partial products................................	0.0	0.2	1.3	2.9	3.5 0.0	3.3 0.0
64. Fails to carry......................	0.0	0.0	0.2	0.2	0.0	0.0
*65. Adds diagonally..................	0.0	0.0	0.0	0.2	0.0	0.0

*rhe numbers in parentheses represent the total number of pupils tested in the grade.

TABLE 7

MISCELLANEOUS ERRORS AND HABITS IN MUL'TIPLICATION RECORDED FOR 2,577 PUPLLS IN GRADES IV-VI

*We nambers in parentheses represent the total number of pupils tested in the grade.

APPENDIX C

27

TABLE 1

ERRORS OCCURPING IN USE OF REMAINDER FOK GRADES V - VIII

(4)	Used remainder within example greater than divisor 169	156	102	50	477
(j)	bropped final remainder when zero was final in quotient only 79	58	88	36	261
(6)	Final remainder was two'-or morefigure number 54	68	32	11	165
(7)	Used remainder as a new partial dividend 53	57	29	18	157
(8)	Final remainder was one-figure number equal to or greater than divisor	35	28	7	102
(9)	Final.remainder correct in example but incorrect in quotient 5	17	10	6	38
* (10)	Final remainder reduced in fraction written as remainder	8	12	10	30
*(11)	Last partial dividend written as a remainder 3	10	7	1	21
(12)	Did not find linal remainder				
	402	411	314	141	1268

TABLE 2

ERRORS RESULTING FROM ZERO IN GRADES V - VIII

	Error					Total
		V	VI	VII	VIII	All Grades
*(13)	Omitted final zero in quotient only	110	101	86	63	360
(14)	Zero final in quotient only, final dividend figure was written for quotient figure	24	19	26	63 21	960 90
(15)	Omitted final zero in both dividen			26	21	90
	and quotient	31	26	13	10	80
(16)	Omitted zero not final in quotient only	18	17	10	9	80 54
(17)	Extra zeros written in quotient because each remainder treated as a new partial dividend	25	0	0	0	25
*(18)	After zero not final in quotient only, dividend disregarded and zero written in quotient	5	9	5	2	25
* (19)	After zero not final in quotient only, dividend written as remainder	9	10	2	2 0	1
* (20)	Omitted zero in the quotient when final in both dividend and quotient, but added zero as a remainder	5	3	6	3	21 17
* (21)	Zero not final in quotient only, dividend figure written in quotient	2	2	5	4	13
(22)	Zero final in quotient only, extra zero annexed to dividénd	0	0	6	6	12
* (23)	Example completed only to zero, not final in quotient only	3	6	0	0	9 9
*(24)	```Remainder not carried to next dividend figure when zero was not final in quotient only```	3	0	1	2	6
* (25)	Zero written for remainder when zero was not final in quotient only	4	0	0	0	6 4
(20)	```last two quotient figures inter- changed when zero was final in woth dividend and quotient```	3	1	0	0	4
(27	```iero and next quotient figures interchanged when zero was not final in quotient only```	0	0	4	0	4
	TOTAL	242	194	164	120	720

Grossnickle, F.E., "Errors and Questionable Habits of Work IN Long Division with a One Figure Divisor," Journal of Educational Research 29: 355-68; Jan. 1936.

TABLE 3
ERRORS RESULTING FROM FACULTY PROCEDURES FOR GRADES V - viIt

Error		Grade				Total for All Grades
		v	VI	VII	VIII ${ }^{1}$	
*(28)	Placed first quotient figure incorrectly	64	22	3	1	90
* (29)	Found only first and second quotient figures	90	0	0	0	90
*(30)	Began with a two-figure when a onefigure partial dividend was sufficient \qquad	36	22	22	6	86
(31)	Used three-figure partial dividend but dropped hundred's figure	45	22	1	0	68
(32)	Used only units' figure of twofigure partial dividend	23	30	0	0	53
*(33)	Duplicated divisor and made it a two-figure number	30	0	0	0	30
*(34)	Multiplied both dividend and divisor by ten then used a twofigure divisor	0	0	0	30	30
(35)	Subtracted larger number from smaller (bottom up)	8	13	6	2	29
(36)	Subtracted larger number from smaller (top down)	3	5	4	5	17
*(37)	Began with second instead of first dividend figure	0	6	3	0	9
*(38)	Began with two-figure partial dividend and wrote two quotient figures for the first estimation..	5	1	0	0	6
	total	304	121	39	44	508

TABLE 4
ERRORS RESULTING FROM LAPSES OF ATTENTION FOR GRADES V - VIII

	Error	Grade				
		v	VI	VII	VIII	All Grades
(39)	Used correct multiplication product but wrote incorrect quotient figure \qquad	33	34	38	23	128
*(40)	Wrote extra quotient figure or figures \qquad	57	30	7	12	106
(41)	Used product too small not detected in subtration	20	30	26	12	88
(42)	Wrote wrong factor of product for quotient figure	13	7	14	6	40.
(43)	Did not complete the example	13	9	10	7	39
*(44)	Forgot to multiply quotient figure by divisor	13	13	1	0	27
(45)	Forgot had borrowed in subtraction.	5	2	4	3	14
*(46)	Used last quotient figure for next divisor	1	2	7	4	14
(47)	Misread own figures	2	4	3	1	10
*(48)	Forgot to write quotient figure although used correct product	8	0	2	0	10
	TOTAL	165	131	112	68	476

TABLE 5
ERRORS RESULTING FROM BRINGING DOWN FOR GRADES V - VIII

Error

(49)	Final dividend figure not brought down	78	29	27	5	139
(50)	Same number brought down twice ...	13	23	2	7	45
*(51)	Figure in dividend other than final figure not brought down	19	19	4	2	44
*(52)	Figure not in dividend brought down	4	. 6	5	1	16
*(53)	Did not bring down divide d figure but wrote 9 for quotien figure..	10	3	2	0	15
$\div(54)$	Brought down two figures at once..	7	2	2	0	11
*(55)	Figure in quotient brought down...	0	3	3	3	9
(56)	Did not bring down zero not final in dividend	2	1	3	1	7
* 57)	Brought down without subtracting for remainder	3	1	1	1	6
	TOTAL 31	136	87	49	20	292

APPENDIX D

32
percexicies of pupils in grade iv b to grade viit a having dIFFICULTY WITH Various skills in aritheilc

Multiplication:												
Errors in combinations	8:'	76	55	74	57	71		58	54	86	37	65
Error in addiag the carried number \qquad	22	26	30	39	45	66		34		74	32	40
Wrote rows of zeros	10	22	32	39	39	55		43	14:	50	30	34
Carrted a wrong number	22	20	21	48	31	36		15	30	43	27	29
Errors in addition	12	24	40	33	31	45		30	22	40	27	30
Forgot to carry	31	32	34	31	16	34		17	20	21	12	25
Used multiplicand as multiplier.	29	18	17	24	20	23		23	28	43	27	25
Error in single zero combinations, zero as multiplier \qquad	18	14	15	41	2	32		15	12	26	20	22
Errors due to zero in multiplier \qquad	10	38	. 30	50	35	48		25	24	21	23	31
Counted to carry ...	18	12	17	35	27	30		15	18	12	16	20
Omitted digit in multiplier....	16	14		30	22	30		13	20	12	14	18
Errors due to zero in muliplicand \qquad	33	32	23	33	29	12		13	10	21	12	22
Division:												
Errors in combinations	88	76	60	78	61	70		53	54	40	46	63
Errors in subtraction.	20	30	30	50	24	57		51	44	45	46	40
Errors in multiplication..	8	10	36	48	41	61		45	30	50	50	38
Used remainder larger than divisor	8	18	36	39	35	46		34	18	38	21	29
Found quotient by trial multiplication	8	8	23	31	24	39		32	26	36	39	27
Neglected to use remainder within problem	29	30	23	31	24	14		19	2	12	J	19
Omitted zero resulting from another digit	24	16	32	50	24	37		19	20	29	25	28
Omitted digit in dividend	22	40	28	48	29	32		23	28	24	36	31
Counted to get quotient Repeated part of multiplication	24	12	21	20	16	20		13	12	19		16
table	33	32	23	26	25	20		4	10	17	12	20
Used long-division form for short division \qquad	4	8	13	37	24	52		19				26
Omirted final remainder	20	36	23	33	27	21		23		12	14	23

Wi1liams, C.L. and R.L. Whitaker, "Diagnosis of Arithmetic Difficulties," Elementary School Journal 37: 594-5, April, 1937.

APPENDIX E

37

COMMON ERRORS IN ADDITION

A. 1. Errors in combinations:

Example (a) 94 Error: $18+4=21$.
83 Here the error was a temporary lapse in accuracy.
76 Jombination is really known. Suggested additional
$\frac{59}{.311}$ practice with Test X (see Appendix I.)

Example (b) 57 Error: $9+7=17$.
59 This proves to be an habitual error for this child, as
117 revealed by oral testing and by the results of Test 1.
Needs individual practice in plenty of small sums involving $9+7$ and $7+9$.
A. 2. Omitted carrying figure:

Example (a) 39 Error: omitted to carry 1. 48 Here pupil omits carrying number very frequently. 77 Obviously carrying is not an automatic process. Needs practice from beginning with simple "carrying" examples.

Example (b) 3 Error: omitted to carry 2.
81 Here error due to fact that pupil adds carrying number
19 in whenever it makes a complete 10 , therefore it is
827 sometimes forgotten.

$$
\frac{94}{1004}
$$

A. 3. Carried wrong number:

Example	94	Error: carried 1 instead of 2.
83	More exercises needed in column addition with a variety	
76	of carrying numbers.	
	59	

Schonell, F.J., Diagnosis ef Individual Difficulties in Arithmetic, Oliver and Boyd; 1937: 58-63.
A. 4. Added in numbers from other column:

Example 3 Error: added in 3 again in tens column.
81
19 This is sometimes due to bad setting out of
827 sums, sometimes to lapse of attention.

$$
\frac{94}{1054}
$$

A. 5. Added in carrying number twice:

Example 28 Error: added in 2 twice in tens column
784 This is due either to lack of consistency in . 9 the time at which the carrying number is 944 added or to retracting steps.
A. 6. Omitted number or numbers from column:

Example 951 Error: omitted 8 in adding.
This is due to losing place in column or to irregular habits of adding. Practice needed in checking answer downwards.

COMNON ERRORS IN SUBTRACTION
S. l. Omitted to allow for borrowing:

Example $\quad 786$ Error: omitted to allow for "borrowing," 8 - 5 $\frac{58}{738}$ instead of $8-6$.

Not a few of these errors appear to be due to lapses, but in the early stages of subtraction many pupils go through a period of intemittent error in this direction. Oral working of examples decreases the error.
S. 2. Subtracted figures in top line (minuend) from those in bottom line (subtrahend):

Example
316 Error: 6-7 and 1-2.
$\frac{27}{311}$
311 Sometimes this is due to general ignorance of subtraction process, sometimes to nature of figures in the two lines, sometimes to bad teaching. Thus oral examination of one group of backward pupils in a junior school showed that in such an example as the above they would say, "6 take away 7," that is, the top line mentioned first, with the result that in suggestible situations the wrong figures were subtracted.
S.3. Subtraction of like numbers in minuend and subtrahend:

Example (a) ${ }^{-}$	$\begin{array}{r} 38 \\ 8 \end{array}$	Error: 8 -8 $=8$.
	38	Drill required on actual comtinations of subtracting
Example (b)	250	Error: 5-5 = 1.
	- 49	
	211	

*S.4. Subtractio, of "0" from a digit or a digit from "0":

Example (a)	$\begin{array}{r} 890 \\ 889 \\ \hline \end{array}$	Error: $0-9=9$.
	9	This is a common error--that of writing in the answer the number to be subtracted from zero.
Example (b)	607	In general the difficulty seems to be one of
	318	adding 10 to 0 . The child experiences difficulty
	319	in seeing that $10-0=10$, or in then using

Example (c)	80
	57
	30

S.5. Added instead of subtracting:

Example 387

196
421

*S.6. "Paying back" to the subtrahend when there was no "borrowing":

Example	987 $\frac{832}{145}$ Error: $8-4$ instead of $8-3$.
	Give series of examples alternating "borrowing" and no "borrowing."

COMMON ERRORS IN MULTIPLICATION
M.1. Errors in tables:

M.2. Errors in "carrying" numbers:

Example (a) 874615 Error: omitted to carry 4

$\xrightarrow{7871495}$| Requires plenty of ahort sums involving a variety |
| :--- |
| of "carrying." |

Example (b) 56 Error: carried wrong number.
4940 In this case the number written down in the answer was carried.

Example (c) 95347 Error: $18+2=21$.
$\frac{6}{562182}$ Requires practice in combinations involving adding In multiplication. See Supplementary Test Y.
M.3. Errors in noughts in multiplier or multiplicand:

Example (a)	$\begin{array}{r} 400 \\ \quad 8 \\ \hline 3288 \end{array}$	Error: $8 \times 0=8$.
Example (b)	$\begin{array}{r} 90 \\ \quad 90 \\ \hline 8100 \\ \hline 90 \\ \hline 8190 \end{array}$	Error: $90 \times 0=90$.
Example (c)	$\begin{array}{r} 80 \\ 160 \\ \hline 800 \\ 80 \\ 80 \\ 860 \end{array}$	Error: position of figures, 800 for 8000 and $80 \times 0=80$.
Example (d)	$\begin{array}{r} 206 \\ \quad 50 \\ \hline 10000 \end{array}$	Error: omitted to carry figure 3 after multiplying 0 by 5.

M.4. Errors in position of figures:

Example (a). Starting to multiply from the right:
34
22
68
$-\frac{68}{136}$
Example (b). Starting to multiply from the left:
52
31
156
52
208

42

COMMON ERRORS IN DIVISION
D.1. Errors in basic combinations:

Example (a) $\frac{411}{9 / 2799} \quad$ Error: $27 \div 9=4$
Requires speed practice in division combinations, with and without remainders. Tests 4, 5 and Supplementary Test Z.

Example (b) $\frac{9}{9 / 89}$ r. 7 Error: $89-81=7$.
D.2. Omitted to carry figures:

Example $\quad \frac{32}{138} \quad$ Error: omitted to carry 1.
D.3. Remainder larger than divisor:

Example $\quad \frac{6}{50}$ r. $8 \quad \mathrm{E}:$ or: 7×6 instead of 7×7.
Needs practice with basic combinations involving remainders.
D.4. Omitted "0" from quotient:

Example (a) $\frac{701}{79010}$ r. 3
Example (b) $\frac{375}{8 / 29643}$ r. 3
*i. 5 . Carried wrong number:
Example $\quad \frac{632}{3462}$ r. 2
5 $\longdiv { 3 4 6 2 }$ Error: $6 \times 5=30,34-30=4$, then curried 1 instead of 4 .
D.6. Usied same number in dividend twice:

Example $\quad 3785$ r. 3
8/29643 Error: 6 used in dividing into 56 and again to divide into 64; 4 used to divide into 64 and again to divide into 43.

NUMBER AND KINDS OF DIFFERENT ERRORS WHICH OCCURRED AT LEAST 52 TIMES AND THE DISTRIBUTION OF THESE ERRORS AMONG THE 26 PRACTICE EXERCISES

Number of Practice Exercises

APPENDIX G

46
\therefore

The following chart includes examples of common errors in elementary school mathematics and analyses of the reasoning for them. This chart will serve as an aid in diagnosing where the child is in need of reteaching.

Analysis

1. Lacks mastery of basic addition. combinations.
2. Macks mastery of basic subtraction combinations.

3. Lacks mastery of basic multiplication combinations.

4. Lacks mastery of basic division combinations.

$$
\begin{array}{r}
6 \\
-\frac{6}{56} \\
-\frac{56}{0}
\end{array}
$$

Reismin, F.K., A Guide to the Diagnostic Teaching of Arithmetic, The University of chicago, $\overline{1926 ; 131-7 .}$

432	
$\times 57$	
3	0
24	24
21	6
24	0

Analysis
5. Subtracts incorrectly within the division algorithm.
3) 73 RI
70)

$$
3 \longdiv { 2 3 0 }
$$

$$
-21
$$

$$
10 \longleftarrow
$$

$$
-9
$$

1
6. Error in addition of partial product.

Example

432

Product.
7. Does not complete addition:
a. Does not write regrouped number. 85
+43
+28

- Leaves out numbers in column addition.

4
8
$2 \longrightarrow$
$\begin{array}{r}+\quad 3 \\ \hline 15\end{array}$
§ lewrites a numeral without computing.
9. Does not complete subtraction.

582
$\begin{array}{r}-\quad 35 \\ \hline 47\end{array}$
10. Does not. somplete division because of Incompleted subtraction.

1) 41
2)

$7 \longdiv { 3 9 7 }$
$-2-80$
48
!.,:1!is:i.....:! !: ! !
in

Analysis
Example
11. Fails to complete division stops at first partial quotient.
$7 \longdiv { 5 0 }$ 350
12. Fails to complete division; leaves remainder greater than divisor. $\frac{80}{9 / 729}$ R 9
$\frac{720}{9}$

1) 201 R 3
2)

$3 / \overline{603}$
600
14. Does not add by bridging endings-should think.
$5+9=14$, so $35+9=44$.
35
$\begin{array}{r}+9 \\ \hline 33\end{array}$
*15. Lacks additive identity concept in 35
addition. $\frac{+20}{50}$
*16. Confuses multiplicative identity within addition operation.

71
$+13$
*17. Lacks additive identity concept in 43 " subtraction. $\frac{-20}{20}$
*18. Confuses role of zero in subtraction 37 :..th role of zero in multiplication $\frac{-20}{10}$
19. Subtracts top digit from bottom digit 30 whenever regrouping is involved with $\frac{-18}{28}$ zero in minuend. :
20. Confuses role of zero in multiplication $7 \times 0=7$ with multiplicative identity.
21. Confuses place value of quotient by adding extra zero.
$30 / \frac{20}{60}$

Analysis
Example
22. Omits zero in quotient

$$
\begin{aligned}
& 4 \longdiv { 3 0 } \text { R } 3 \\
& \frac{1203}{\frac{1200}{3}}
\end{aligned}
$$

23. Lacks facility with addition algorithm:
a. Adds ones to ones and tens;

37
+2
+59
b. Adds tens to tens and hundreds; 342

$$
\begin{array}{r}
+36 \\
\hline 678
\end{array}
$$

c. Adds ones to tens and hundreds $\begin{array}{r}132 \\ +\quad 6 \\ \hline 798\end{array}$
d. Is unable to add horizontally:
$345+7+13=185$
Thinks: $3+7+1=11$; writes 1

$$
\begin{array}{rlc}
4+3 & =7(+1 \text { carried }) & 8 \\
5 & =5 & \frac{5}{185} \\
\text { zero to make sum greater } &
\end{array}
$$

May add zero to make sulu greater than largest addend: 1850
24. Does not regroup ones to tens. 37
$+\frac{25}{52}$
25. Does not regroup tens to hundreds (or hundreds to thousands).
$\stackrel{+662}{735}$
26. Regroups when unnecessary.

43
$+24$
27. Writes regrouped tens digit in once plo: carries ones digit (withes the $1 \ldots$. 1. (2) the 2 from ' 12 '). 35 +7
+51

Analysis
Example
28. When there are fewer digits in subtrahend:
a. subtracts ones from ones and

783
from tens (and hundreds);
b. subtracts tens from tens and hundreds.

783
$\frac{-23}{560}$
29. Does not rename tens digit after regrouping.
30. Does not rename hundreds digit after regrouping. 532

$$
\frac{-181}{451}
$$

$\begin{array}{lr}\text { 31. Does not rename hundreds or tens when } \cdots & 906 \\ \text { renaming ones. }\end{array}$
32. Does not rename when zero is in tens place, although hundreds are renamed. 803 -478 335
33. When there are two zeroes in minuend, renames hundred twice but does not
rename tens. $\quad \frac{326}{248}$
34. Decreases hundreds digit by one when unnecessary.
35. Uses ones place factor as addend 32

$$
\begin{array}{r}
\times 4 \\
\hline 126
\end{array}
$$

36. Adds regrouped number to tens but does

35 $\frac{\times 7}{65}$

$$
\begin{aligned}
* \quad 7 \times 5 & =35 \\
30+30 & =60
\end{aligned}
$$

Analysis Example
37. Multiplies digits within one factor. *4 X $1=4 ;$ $1 \times 30=30$
38. Multiplies by only one number

457
$\begin{array}{r}\times 12 \\ \hline 914\end{array}$
39. "Carries" wrong number
40. Does not multiply ones times tens 32
$\begin{array}{r}\times 24 \\ \hline 648\end{array}$
41. Reverses divisor with dividend.
$6 / \frac{2}{30}$ *
*Thinks $6 \div 3$ instead of $30 \div 6$
42. Does not regroup; treats each column as

23
separate addition example
+8
+211
43. Subtracts smaller digit from larger

273
at all times to avoid renaming
$\frac{-639}{446}$
44. Does not add regrouped number

37
$\times 7$ 219
45. Confuses place value in div sion:
1)
200) 201 $3 \longdiv { 6 0 0 3 }$

6000
a. Considers thousands divided by 3 ones as hundreds divided by ones;

3

Analysis

b. records partial quotient as tens Instead of ones;
c. omits zero needed to show no ones in quotient.

Example
50)
100) 150
$7 / 735$
-700
35
35
$3 / \frac{2}{\frac{61}{\frac{6}{1}}}$ R 1
46. Ignores remainder because:
a. does not complete subtraction;
b. does not see need for further computation;
$\begin{array}{ll}\text { c. does not know what to do with "2" if } & \frac{80}{562} \\ \text { subtraction occurs, so does not } & \end{array}$ compute further.

Ashlock, R.B. Error Patterns in Computation, C.E. Merrill Publishing Co., 1972.

Brueckner, L.J. Diagnosis and Remedial Teaching In Arithmetic, 1930
"Diagnosis in Artihmetic," National Society for the Study of Education, Thirty-fourth Yearbook Educational Diagnosis, 269-302, 1935.
, G.L. Bond, The Diagnosis and Treatment of Learning Difficulties, Appelton-Century-Crofts, Inc., 1955.
, E.O. Melby, Diagnostic and Remedial Teaching, Houghton Miffiln Co., 1931.
__ E.L. Merton, G.o. Banting and A. Salba, "Remedial Work in Arithmetic," The Problem of the Elementary School Principal in the Light of the Testing Movement, P. 395-429. Second Yearbook of the Department of Elementary School Principals, Washington, N.E.A., 1923. Cited by Buswell, G.T. and C.H. Judd, Summary of Educational Investigators Relating to Arithmetic, The University of Chicago, 1925, p. 115.

Burge, L.V., 'Types of Errors and Questionable Habits of Work in Multiplication," The Elementary School Journal 32: 185-94; Nov. 1932.

Burns, P.C. "Analytical Testing and Follow-up Exercises in Elementary School Mathematics," School Science and Mathematics 65: 34-38, February, 1.965.

Buswell, G.'T. and C.H. Judd, Summary of Educational Investigation Relating to Arithmetic, The University of Chicago, 1925.
L. John, Diagnostic Studies in Arithmetic, The University of Chicago, 1926.

Cox, L.S., "Diagnosing and: Remediating Systematic Errors in Addition and Subtraction Computations," The Arithmetic Teacher 22: 151-156, February, 1975.

Grossnickle, F.E., "Errors - Questionable Habits of Work in Long Division with a One-Figure Division," Journal of Educational Research 29: 355-368; January, 1936.

Grossnickle, F.E., "Constancy of Error In Learning Division with a TwoFigure Divisor," Journal of Educational Research 33: 189.-96, November, 1939.

Harvey, L.F. and G.C.' Kyte, "Zero Difficulties in Multiplication," The Arithmetic Teacher 12: 45-50, January, 1965.

Holland, H., "Dillizulties Involved in Long Division and Some Suggestions for Teaching the Process," Elementary School Jourral. 42: 585-96, April. 1942.

Lazar, May, Diagnostic and Remedial Work in Arithmetic Fundamentals, New York Bureau of Reference, Research and Statistics, Board of Education: 25-55. 1928. Cited by Burge, L.V. "Types of Errors and Questionable Habits of Work in Multiplication," The Elementary School Journal 32: 185-94. November, 1932. P. 186.

Myers, G.C. "Number Difficulties Common Difficulties in Arithmetic," The Grade Teacher 52: ; March, 1935.

Reisman, F.K., A Guide to the Diagnostic Teaching of Arithmetic, The University of Chicago, 1926.

Schonell, F.J., Diagnosis of Individual Difficulties in Arithmetic, Oliver and Boyd, 1937.
, F.E. Schonell, Diagnosis and Remedial Teaching in Arithmetic, Oliver and Boyd, 1957.

Uhl, W.L., "The Use of Standardized Materials in Arithmetic for Diagnosing Pupil's Methods of Work," Elementary School Journal 18: 215-18, November, 1917. Cited by Buswell, G.T., and C.H. Judd, Summary of Educational Investigations Relating to Arithmetic, The University of Cf.isis $\%$, 1925. p. 117.

Williams, C... sud R.L. Whitaker, "Diagnosis of Arithmetic Difficulties," Elementary School Journal 37: 592-600, April, 1937.

[^0]: **

 * Documents acqeired by ERIC include many informal unpublished *
 * materials not available fron other sources. ERIC nakes every effort *
 * to obtain the best copy available. Nevertheless, items of marginal
 * reproducibility are often encountered and this affects the quality
 * of the nicrofiche and hardcopy reproductions ERIC makes available
 * via the ERIC Document Reproduction Service (EDRS). EDRS is not

